首页 玄幻 武侠 都市 历史 科幻 灵异 游戏 书库 排行 完本 用户中心 作者专区
小米阅读 > 其他 > 数学纪闻录 > 第85章 连续统基数问题、算数公理相容性、李变换连续群等问题

1.康托尔的连续统基数问题

(根据康托尔的定义)若两个集合——即两个由普通实数或点构成的集合——能建立起一种对应关系,使得其中一个集合的每个元素,都能对应到另一个集合中唯一确定的元素,那么这两个集合就被称为“等价”或“具有相同基数”。

康托尔对这类点集的研究,引出了一个看似非常合理的定理,但尽管人们付出了极大努力,至今仍无人能证明它。这个定理是:

任何由无穷多个实数构成的集合(即任何数集或点集),要么与自然数集(1, 2, 3, …)等价,要么与全体实数集(即连续统,也就是一条直线上的所有点)等价。因此,从等价性角度来看,数集只存在两种类型:可数集与连续统。

由这个定理可直接推出:连续统的基数是可数集基数之后的下一个基数。因此,证明该定理能在可数集与连续统之间搭建一座新的桥梁。

我还想提一下康托尔的另一个极具意义的论断——它与上述定理联系极为紧密,或许还能为定理的证明提供关键思路。若一个实数集满足“对集中任意两个数,都能确定谁是‘前一个’、谁是‘后一个’,且若a在b之前、b在c之前,则a一定在c之前”,那么这个集合就被称为“有序集”。一个集合的“自然排序”指的是“小数在前、大数在后”的排序方式,但显而易见,集合的排序方式还有无穷多种。

若我们给定一个集合的某种排序,并从中选出一个子集(即部分元素构成的集合),这个子集也会是有序的。康托尔重点研究了一种特殊的有序集,他称之为“良序集”——其特征是:不仅集合本身有第一个元素,它的每个子集也都有第一个元素。

自然数集(1, 2, 3, …)按自然排序显然是良序集;但全体实数集(即按自然排序的连续统)显然不是良序集——比如,若我们取“一条线段上除去起点后的所有点”作为子集,这个子集就没有第一个元素。

由此引出一个问题:能否用另一种方式对全体实数进行排序,使得它的每个子集都有第一个元素?也就是说,连续统能否被视为良序集?康托尔认为答案应当是肯定的。在我看来,若能直接证明康托尔这一非凡论断(比如,实际给出一种排序方式,使得该排序下的每个子集都能找到第一个元素),将是极为理想的结果。

2. 算术公理的相容性

当我们研究某门学科的基础时,必须建立一套公理体系——它需精确且完整地描述该学科“基本概念”之间的关系。这套公理同时也是对这些基本概念的定义:在我们所研究的学科范围内,任何命题若不能通过有限步逻辑推理从公理推导得出,就不能被认定为正确。

深入思考后会发现一个问题:公理集中的各个公理之间是否存在依赖关系?是否存在某些公理包含共同的“成分”?若想得到一套“公理彼此完全独立”的体系,就必须把这些共同成分分离出来。

不过,在与公理相关的众多问题中,我认为最重要的是:证明公理之间不存在矛盾,即基于公理的有限步逻辑推理,永远不会推出相互矛盾的结论。

在几何学中,公理相容性的证明可通过“构造一个合适的数域”来实现——让这个数域中数的关系,与几何学公理形成对应。这样一来,若从几何公理推出矛盾,在该数域的算术中也必然能发现矛盾。通过这种方式,几何公理的相容性证明,就转化为了算术公理的相容性证明。

另一方面,证明算术公理的相容性需要一种直接方法。算术公理本质上就是已知的运算规则,再加上连续性公理。我最近整理过这些公理[4],整理时将连续性公理替换为两个更简单的公理:一个是着名的阿基米德公理,另一个新公理的核心内容大致是:在其他所有公理都成立的前提下,数构成的体系是“无法再进一步扩展”的(即完备性公理)。

我确信,通过仔细研究并适当改造无理数理论中已知的推理方法,一定能找到证明算术公理相容性的直接途径。

从另一个角度说明这个问题的重要性:若给一个概念赋予了相互矛盾的属性,我认为从数学意义上说,这个概念“不存在”。比如,“平方等于-1的实数”在数学中就不存在。但如果能证明,通过有限步逻辑推理,永远不会从赋予概念的属性中推出矛盾,那我就认为这个概念(比如满足特定条件的数或函数)的“数学存在性”得到了证明。

就我们目前讨论的算术实数公理而言,证明公理的相容性,同时也是证明“完整实数系”或“连续统”的数学存在性。事实上,当公理相容性的证明完全完成后,那些偶尔出现的、对“完整实数系是否存在”的质疑,将变得毫无根据。

从上述角度来看,全体实数(即连续统)并非“所有可能的十进制小数序列”,也不是“所有可能的基本序列元素生成规则”的集合,而是一个“事物体系”——体系内事物的相互关系由设定的公理支配,且所有能通过有限步逻辑推理从公理导出的命题(也只有这些命题)在体系内为真。在我看来,只有这样定义,连续统的概念才具有严格的逻辑合理性;而且这似乎也最符合经验与直觉给我们的启示。

这章没有结束,请点击下一页继续阅读!

目录
设置
设置
阅读主题
字体风格
雅黑 宋体 楷书 卡通
字体风格
适中 偏大 超大
保存设置
恢复默认
手机
手机阅读
扫码获取链接,使用浏览器打开
书架同步,随时随地,手机阅读
收藏
换源
听书
听书
发声
男声 女生 逍遥 软萌
语速
适中 超快
音量
适中
开始播放
推荐
反馈
章节报错
当前章节
报错内容
提交
加入收藏 < 上一章 章节列表 下一章 > 错误举报