首页 玄幻 武侠 都市 历史 科幻 灵异 游戏 书库 排行 完本 用户中心 作者专区
小米阅读 > 其他 > 数学纪闻录 > 第72章 目眩神惑

数学纪闻录 第72章 目眩神惑

作者:黑天蛮王 分类:其他 更新时间:2025-12-13 21:31:06

1935. 学生应避免将结论建立在发散级数之上,因为关于其合法性的争议,目前尚未有能获得广泛认同的答案。但发散级数可作为发现的工具,前提是其结果需经其他方式验证后,方可视为成立。——奥古斯塔斯·德·摩根,《三角学与双代数》(伦敦,1849年),第55页。

学者当避以发散级数立说,因其合法性之争,尚无广被认同之解。然可用为发现之具,唯其结果经他法验证,方可为定。——奥古斯塔斯·德·摩根《三角学与双代数》(伦敦,1849年),页五十五。

1936. 在代数中,如今唯一让我牵挂的,便是发散级数——我无法认同法国人摒弃它们的做法。——奥古斯塔斯·德·摩根,《格雷夫斯着〈W.R.汉密尔顿传〉》(纽约,1882-1889年),第3卷,第249页。

今代数中,唯发散级数萦我心,吾不苟同法人弃之之举。——奥古斯塔斯·德·摩根《格雷夫斯着〈W.R.汉密尔顿传〉》(纽约,1882-1889年),卷三,页二百四十九。

1937. 这是我们学科中一种奇特的变迁:这些(发散)级数在本世纪初曾被认为应永远逐出严谨数学的领域,而到了本世纪末,它们却在叩门请求重新进入。——J.皮尔庞特,《艺术与科学大会》(波士顿与纽约,1905年),第1卷,第476页。

此乃吾门中一异变也:此等(发散)级数于本世纪初,尝被逐于严谨数学之外,至末叶,竟叩门求入。——J.皮尔庞特《艺术与科学大会》(波士顿与纽约,1905年),卷一,页四百七十六。

1938. 芝诺关注三个问题……即无穷小问题、无穷问题和连续性问题……从他所处的时代到我们今天,每一代最杰出的智者都依次钻研过这些问题,但总体而言收效甚微……魏尔斯特拉斯、戴德金和康托尔……彻底解决了它们。他们的解决方案……清晰明了,不再留下丝毫疑问或难题。这一成就或许是这个时代最值得夸耀的……无穷小问题由魏尔斯特拉斯解决,另外两个问题的解决由戴德金开启,最终由康托尔完成。——罗素,伯特兰。

《国际月刊》,第4卷(1901年),第89页。

芝诺所究,凡三题焉……一曰无穷小,二曰无穷,三曰连续性……自其世迄于今,历代俊乂迭相研索,然终鲜所获……及魏尔斯特拉斯、戴德金、康托尔出,乃尽解之。其解……明彻无疑,不复有毫厘滞碍。此功者,盖当世之冠也……无穷小之题,魏尔斯特拉斯解之;余二题,戴德金发其端,康托尔竟其功。——罗素·伯特兰

《国际月刊》四卷(1901年),八十九页。

1939. 直到莱布尼茨和牛顿通过发现微积分,驱散了笼罩在无穷概念上的古老阴霾,清晰地确立了连续性和连续变化的概念,新发现的力学概念才得以充分且富有成效地应用并取得进展。——亥姆霍兹,H.

《物理科学的目标与进展》;《通俗演讲》[弗莱特](纽约,1900年),第372页。

迄莱布尼茨与牛顿创微分学,祛无穷概念之古幽,明连续性与连续变化之理,而后新得力学概念方得畅用而日进焉。——亥姆霍兹·H.

《物理科学之旨与进》;《通俗讲演》[弗莱特](纽约,1900年),三百七十二页。

1940. 无穷小的概念并不包含矛盾……作为一名数学家,我更喜欢无穷小方法而非极限方法,因为前者更容易,且不易陷入陷阱。——皮尔斯,C.F.

《心智法则》;《一元论者》,第2卷(1891-1892年),第543、545页。

无穷小之说,无悖谬也……余为算家,窃谓无穷小法优于极限法,以其简而易行,鲜陷误区也。——皮尔斯·C.F.

《心智律》;《一元论者》二卷(1891-1892年),五百四十三、五百四十五页。

1941. 对所有抽象推理的主要反对意见都源于空间和时间的概念;在日常生活中,在不经意的视角下,这些概念非常清晰易懂,但当它们经过深奥科学的审视(且它们是这些科学的主要研究对象)时,所呈现的原理却似乎充满了晦涩与矛盾。没有任何专为驯服和压制人类叛逆理性而发明的祭司教条,比关于广延的无限可分性及其推论的学说更违背常识;所有几何学家和形而上学家都洋洋得意地大肆宣扬这些。一个真实的量,比任何有限量都无穷小,其中又包含比自身更无穷小的量,以此类推,以至无穷;这是一座如此大胆而庞大的建筑,任何所谓的论证都难以支撑它,因为它违背了人类理性最清晰、最自然的原则。但更令人惊奇的是,这些看似荒谬的观点却得到了一系列最清晰、最自然的推理支持;我们不可能接受前提而拒绝结论。关于圆和三角形性质的所有结论,没有什么比它们更令人信服和满意的了;然而,一旦接受了这些结论,我们又怎能否认圆与其切线的接触角比任何直线角都无穷小,以及当你把圆的直径无限增大时,这个接触角会变得更小,以至无穷,还有其他曲线与其切线的接触角可能比任何圆与其切线的接触角都无穷小,如此等等,以至无穷呢?这些原理的论证似乎和证明三角形的三个角等于两个直角一样无可挑剔,尽管后者的观点自然易懂,而前者却充满了矛盾与荒谬。理性在此似乎陷入了一种惊愕与悬置的状态,即便没有任何怀疑论者的暗示,它也会对自身以及所依据的基础产生怀疑。它看到一束强光,照亮了某些地方;但这束光却与最深邃的黑暗接壤。在这两者之间,它感到眼花缭乱、困惑不已,几乎无法对任何一个对象做出确定而有把握的判断。——休谟,大卫。《人类理解研究》,第12节,第2部分。

本小章还未完,请点击下一页继续阅读后面精彩内容!

目录
设置
设置
阅读主题
字体风格
雅黑 宋体 楷书 卡通
字体风格
适中 偏大 超大
保存设置
恢复默认
手机
手机阅读
扫码获取链接,使用浏览器打开
书架同步,随时随地,手机阅读
收藏
换源
听书
听书
发声
男声 女生 逍遥 软萌
语速
适中 超快
音量
适中
开始播放
推荐
反馈
章节报错
当前章节
报错内容
提交
加入收藏 < 上一章 章节列表 下一章 > 错误举报